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Summary

Estimation techniquas are given for the three-parameter Weibull
distribution, with the location (or origin) paramster unknown, and possibly
also the shape and/or scale paramsters unknown. Tests of fit are dascribed,
and tables are given for the EOF statistics A2, W and U7, to make the tests.
Several examples are discussed.

Kay words. EDF tests: empirical distribution function: goodness-of-fit:
reliability: survival analysis.

DT QUALITY INSPECTED 8

Accesion For

NTIS CRARI g
DTIC TAB
Unannounced O
Justification

By

Distribution |

Avaliability Codes
Avail and/or

Dist 5pec]a]
A-l |




ESTIMATION AND TESTS OF FIT FOR THE THREE-PARAMETER
WEIBULL DISTRIBUTION

1. INTRODUCTION

In this article are given estimation procedures and tests of fit (based
on the empirical d_istribution function, or EDF), for the three-parameter
Weibull distribution:

F(xia,f,m) = 1 - exp[-((x-a)/M)"], x>a (1)
vhere § and m are positive constants. When a 1is known, the

distribution is called the tvo-parameter Weibull distribution, and estimation

procedures are then very straightforward: the tests

e

" g ICu0A
are r.f.uuc‘d in 'Soctimashlgw}ku we concentrate on tests for use wvhen

847 2ITQ
a is not km’m but: must »tpmg from the sample, together with m and

st st
g 1if mccuLtr 3n dudouc ﬂ'n-s’;&lcu problems can sometimes arise in

estimating qbo ‘paraseters, ‘o in szccion 2, procedures are given to obtain

efficient utmul vhi.ch can then bo used with the goodness-of-fit tests.
For reasons ‘of space nny dsuii; ;f both estimation and goodness-of-fit
procedures ?:vo been on!.ttod, some ff these are in lockhart and Stephens
(1989). DU B S

It is worthwhile to observe that the three-parameter Weibull
distribution is a member of a wider class, the generalized Extreme-Valus (or

Jenkinson) distribution. This distribution is

F(xabc)-l-oxp[ {1+c( ]}m] x>a (2)

The parameter b must be positive while a and ¢ may be any real numbers.

The three-parameter Weibull distribution is the subfamily of F  with

¢ > 0. The special case c=0 is the usual extreme-value distribution
F'(x:0,0,0) = 1 - exp[- exp((x-)/B)] , -w<x<e=; (3)




it arises as the limit of the three-parameter Weibull family (1) as m I =,

Estimation of parameters. The goodness-of-fit procedures depend on first

estimating the parameters in (1) by an efficient method, for example, by
maximum likelihood. If one had an infinitely large Weibull sample, such
estimates could be found straightforwardly. However, for finite samples,
usually small, there will be some data sets which give no local maximum for
the likelihood. If one were willing to fit the larger family (2), maximum
1ikelihood estimates could be found, but with a negative c; thus the
resulting fitted distribution will not be in the Weibull family. However,
practical workers in many fields do not wish to broaden the class of
distributions beyond the Weibull, to include (2); then, for practical
purposes, the best Weibull fit will be the distribution with c=0 (the
nearest non-negative c), that i{s to say, the extreme-value distribution (3).
Note that c=0 corresponds to m=w in (1) (and a > -®» and f H @),
In Section 2 we discuss estimation, and how to recognize this

difficult case. A formula is given to calculate, from a given data set, a
quantity A, which, when negative, indicates that no local maximum for the
likelihood can be found, and distribution (3) should be fitted to the data.

Cheng and Iles (1990) have discussed estimation problems for three-
parameter distributions embedded in a larger model and in particular, problems
for the three-parameter Weibull distribution, and have pointed ocut the connec-
tions between (1) and (2). They offer tests for c=0, with the assumption that,
if this can be accepted, the extreme-value distribution (3) will be fitted to
a data set; if a zero c¢ 1is rejected, eati-afion continues for the Weibull
distribution. The implication is that, where acceptable, the distribution (3)
will be fitted in preference to (1). We are concerned with providing tests of
fit for the distribution (1), but estimation of parameters must come first; we

concentrate therefore on fitting the Weibull distribution whenever this is




possible, and only fall back on (3) where we must assume = = @. There are
naturally many points of contact with Cheng and Iles (1990), as we shall
see below, although these authors do not discuss tests of fit.

Apart from the problem of deciding whether = 1is infinite, it is
wvall-known that there are other problems of estimation vhen a 1is not
known; for example, the likelihood can be made infinite if =& also is
unknown, or if known m < 1. An extensive literature exists on this type of
problem (for example Smith, 1985; Cheng and Iles 1987). Saith (1985)
discusses asymptotic procedures in detail, and gives extensive theory, to
vhich we refer below; Smith and Naylor (1987) compare Bayesian and maximum
likelihood estimators in a case study. Of the results which are known and
proved, most of them concern asymptotics, where the sample size is infinite,
or they concern the estimation situation for m large. In this article we
concentrate on the practical cases of finite samples, and smaller values of a.

Goodness-of-fit tests. Suppose a random sample Xq1Zgseo Xy is given.

The goodness-of-fit tests are based on the empirical distribution
function (EDF) of the x,, and in practice the statistics are calculated from
the values z, given by the probability integral transform =z IS F(xi: a,pf,m)
vwhere estimates of a, § and m are used in F(-) when the paramsters are
not known. EDF tests have be¢n shown to be powerful in many test situations;
rival procedures, such as correlation tests or spacings tests, often have
zero asymptotic efficiency relative to EDF tests (see, for example, Cibisov
(1961) for ARE of spacings tests, and McLaren and Lockhart (1987) for ARE o.f
correlation tests).

The ﬁtintion techniques depend on the profile likelihood of the
data. They are set out in Section 2. The tests of fit are described in
Section 3, and the theory is given in Section 4. Throughout the paper, the

plots of the profile likelihood, the estimation procedures and the tests of




fit will be illustrated by reference to three dats sets, given in Appendix 1.
The three sets are as follows:
(a) Data set 1, from Cox and Oakes (1984, Table 1.3) consists of 10 values of
the number of cycles to failure vhen springs are subjected to various stress
levels. For these data, the stress level is 950 ll/-z, and the valuss are in
units of 1000 cycles.
(b) Data set 2 consists of 15 times to failure of air conditioning equipment
in aircraft: these are taken from a table of times for several aircraft,
given in Proschan (1963, Table 1), and are the data for aircraft number 7910.
This set has been used by Stephens (1986b) in studying various tests for
exponentiality, and the conclusion was drawn that the times coms from a
distribution with decreasing failure rate (DFR); if this distribution is
Weibull, DFR implies m < 1. Clearly both data sets 1 and 2 have been
rounded, so they become discrete, but this makes negligible difference to the
estimation procedures or the tests of fit. |
(c) Data set 3 is artificially comstructsd, to illustrate the third possible
situation which can occur (although more rarely) in analysing a sample.
In order to save space, we give tables only for the EDF statistic Az, vwhich
is known in many situations to have good power. Tables for the statistics
W’ and U2 are given by Lockhart and Stephens (1989).

Finally we remark that tables for testing fit to the larger family (2)

above will be published separately.

2. ESTIMATION PROCEDURES

2.1 The different Cases. For the test of Ho, eight cases can be
distinguished, according to which parameters in (1) must be estimated; the
other parameters are assumed known. The cases are:

Case 0: all parameters known; Case 1: a unknown; Case 2: B unknown;




Case 3: @ and § unknown; Case 4: @ unknown; Case 5: a and =m unknown;
Case 6: § and 3 unknown; Case 7: a, # and o all unknown.

Case mmbexs 0,1,2 and 3 correspond to the mumbers used for other
distributions involving only location and scale paramsters; see, for

example, Stephens (1986a). 1In Case O, the s, given by the probability
integral transfora are, on Ho. uniform between O and 1; EDF tests for this
Case are given in Stephens (1986a, Section 4.4). In Cases 2, 4, and 6 above,
where a is known, the transformation y = - log(x-a) 1is made and the
y-sample is tested to come from the extreme-value distribution

F(y) = exp[-exp(-(y-a’)/B'}], -®<y<s= (4)

(Throughout the paper, log refers to natural logarithm). EDF tests are given
in Stephens (1977, or 1986a, Section 4.11). Here the relationship between (1)
and (4) is that a’' = - log8 and §’' = 1/m.

Thus in this article it is necessary to give tests only for Cases 1, 3,
5 and 7, where a must be estimated, and possibly also 8 and m. As wvas
stated in Section 1, this is usually done by maximum likelihood, and we first
examine the likelihood equations.

Suppose L(a,f,.m) is the likelihood for a sample Xyoeoo o Xy from (1).
The log-likelihood function is then
A= log L(a,8,m) = n log = + (m-1) mog(xi-c)
- nm log B - Z((x,-a)/p)" 5)

wvhere sums are for i from 1l to n. From (5) the likelihood equations are

g—: =n/m+2 log(xi-a) - (B(x i-a)' log(xl-c))/ﬁ. -
(log A)tn - E(x;-a)"/f") = 0 (6)

2 - @1 xp-a) "t - (@ 2™ /" - 0 N




a nm (x,-a)" 0 8)
- e + o -
E7] [ B ,-*T

These will be used to give estimates vhensver a, m, and/or § are unknown.

Equation (8) may be used to eliminate S from (6) or (7), giving

I(x 4 -a)-lo;(xl-c) Z log(x 1 -a)

1l
:- z(xi-c)' + - -0 ¢))
-1
=(x -c).
-.-;l 2(!1-0).1 +n —-—1—';- - 0; (10)
z(xi-a)
also (8) can be written
Z(xl-a)n 1/m
B = {—— (11)

to give the estimate of B from the estimated a and the known or estimated
value of a.

The problems of estimation arise because, vhen & or a is
less than 1, the likelihood can be made infinite by setting a = X1y vhere
are the order statistics of the sample. This is

X <x <x

(L 2) °*° (n)
clearly a biased estimate of a, and we propose a better estimate below.

2.2 Cases 1 and 3: = known.

Suppose the known value of a 1is By; we must discuss the two cases (a)
o, >1 (b) 0< m, < 1. (Note that when B, = 1, the distribution (1)
reduces to the exponential distribution with unknown origin; tests for this
distribution have been given by Spinelli and Stephens, 1986).

(a) Suppose m, > 1. Then in Case 1, with B known, equation (7) is
solved for a. In Case 3, (9) is solved for a and then (11) for J, using
a. It is easy with computers to solve for these estimates: a
ctraightforva.rd procedure is to start with an estimated a, = x(n - ¢, vhere

¢ 1is very small, and to decrease a_ steadily until a solution is found.

t




(b) Suppose 0 < =, <1. The M.L. estimate of a is now a = xu); ic
is a biased estimate and gives an infinite likelihood. We propose the
following alternative estimates. Let k = 1/-0. In Case 1, take
- k
a x(l) f/n".

For Case 3, proceed iteratively as follows: Suppose f(a,m) is the
solution of (1l1), and start with ay = x(l) and ﬂo - p(co.lo). Then take

' ﬂr
converge to estimates a and J. Many studies indicate that this procedurs,

a,, - Xy - pt/nk, and B = pla,.m), for r=0,1,...until a

vhich we call procedure A, converges rapidly to estimates which usually give
a better fit than the usual a = x(l). and in Case 3, 8 = p(&;no). Procedure

A is illustrated by Example 2 below.

Example 1. Case 1. Consider data set 1, in Table 1. To illustrate Case 1,

suppose values S =70 and m = 2.1 are assumed known. (These are
reasonably consistent with the values gatimated in Case 7 below). The M.L.E.

of a 1is 105.31, from equation (7).

Example 2, Case 3. Consider data set 2 in Table 1, and suppose

m= 0.5, say. Then usual estimates are a = Xy = 12.0, and B = 69.42,
from (11). Procedure A converges rapidly to give @ =11.69 and B = 70.45.

2.3 Cases 5 and 7.

In these cases, a and @ are both unknown. Again the likelihood can

be made infinite, by allowing a = x and using any estimate m such that

1)’
m<1l. Thus m cannot be made precise. We shall suggest estimates based on
the profile likelihood, L'(a,), abbreviated L”. This is the likelihood L
maximised with respect to f and m, for a fixed L Thus
L*(at) - L(at.pc.t) vhere, for a given a., for Case 5, pt is the known
is the solution of (6); for Case 7, m

B, and then m andpc are the

t
solutions of (9) and (11). Case 5 (wvhere only B is known) occurs very

t




rarely in practice, and froam here on we shall discuss estimation only for the
important Case 7, vwhere all three parameters are unknown.

Case 7. Ve consider the possible forms which a plot of Z(at) = log L*(ot).
against L might take. Suppose Z(at) is abbreviated to Z. There appear
to be only three possible types of plot, illustrated by Figures la, 1b and
lc. These are the plots for data sets 1, 2, and 3 respectively.

Figure la It may be seen that only Figure la has a local maximum, and only
vith this plot is there a true ML solution, occurring for the value of a

equal to the a, at the maximum; then @ can be found from (9) or (10), and

t
B from (11) using a and @m. The minimm for Z which occurs in Figure la
gives a saddlepoint for the likelihood. Figure la is most likely to arise
when the true m > 1; if the sample were infinite, it would certainly be the
plot arising wvhen m > 1. Rockette, Antle and Klimko (1974) have conjectured
that Figure la occurs with probability converging to 1 as n 5 ® when = > 1.
They noted that the existence of a local maximum implies the existence of a
saddlepoint. Smith (1985) shows inter alia that when =m > 1, there is, with
probability approaching 1 as n 9 @, a root of the likelihood equations
vhich is a consistent local maximum of the likelihood.

Figure 1b In Figure 1b, Z steadily decreases as e, decreases; this figure
occurs for finite samples with increasing probability as @ becomes smaller;
for an infinite sample we believe that it would be certain to occur whenever
m <1l The maximum likelihood estimate of a would then be X1y giving an
infinite likelihood for m < 1. This estimate is clearly biased, and we
recommend the estimate a given by Procedure 1b in Section 2.6 below; this
gives efficient estimates, with a less biased estimate of a.

Figure lc Here there is a minimuam for Z (again this gives a saddlepoint
for the likelihood), but there is no maximum and therefore no ML

solution. This figure would effectively never occur if the sanple were




infinite, (see Smith, 1985) but with finite samples it arises with increasing
probability as & increases (see Table 4 below). The graph of Z tends to a

horizontal asymptote as a,_ - - ®, suggesting that the MLE of a, > -; in

t
turn m and 8 both approach «. The Weibull distribution then takes the
limiting form discussed in the introduction, namely the extreme-value
distribution (3); the relationship between the parameters in (3) and those in
(1) is that b=1lim /2 and a = lim(a+8), as a» -», S e, and e,
Clearly if it could be decided immediately from a data set that Pigure lc
would arise, there would be no need to try to find the MLE for (1), and (3)
could be fitted directly. In Section 2.5 we show how this may be done by
calculating a quantity A whose sign immediately detects Figure lc, but

first we discuss the M.L. equations (%) and (10).

2.4 Solution of the Maximum likelihood equations (Case 7).

Maxima and minima in Figures la, 1b and lc correspond to solutions of (9)
and (10) for a and @, and then (11) for J. Let a, be a trial value for
«, and let m9 be the solution of (9) and 20 the solution of (10); these

may be found iteratively. If a plot of my against a_ intersects a plot

t
of 20 against a,, ve have the solution(s) required. Plots of my and o,
against a, are shown in Figures 2a, 2b and 2c; they are the plots for data
sets 1, 2 and 3 respectively. There are three possibilities; no
intersection, so no MLE, as in Figure 2b; one intersection, also no MLE, so

fit the extreme-value distribution, as in Figure 2c; or two intersections,

with MLE corresponding to the solution with smaller a, as in Figure 2a.

2.5 Detection of Figures 1c and 2c¢c Ve first give a procedure to decide if

Figures lc and 2c are appropriate for a given data set, without
actually plotting them. In Figures 2a, 2b, 2c it appears that the solutions

for my and m, tend to parallel lines as a, > - @ this is shown to be

11




true in Appendix 2.
Suppose A 1is the limiting "gap” between these lines, that {is,

& = lim (m,-m); the value of A 1is found as follows. Let X = Zx,/n, and
a >
s = }:xf/n; also define 'l'r - z(xi)” exp(--yxi); in these expressions the
sums run for i-l1,...n. Let v be the golution of
T
) 1
;°%- ’-1‘; (12)
The valus of vy can easily be found by iteration, starting, for example, with

7 =1 in the right-hand side terms To and T, Define

D = xT, + 1(Tyx T)) (13)
v 1is the limiting slope of the lines, and A is given by

& = (x Ty - v(sT, - T,)/2)/D (14)

It is clear that a negative value of A implies Figure 2c, and then the
Weibull fit should be abandoned in favour of the extreme-value fit (3) - note
that the x-values are fitted directly, and logarithms are not taken first, as
in the test with known a in Section 2. The detection of Figures lc and 2c
by A 1is equivalent to use of a discriminant L, proposed by Cheng and Iles
(1990) although they do not discuss the behaviour of equations (9) and (10)

in the same detail.

Example 3, Case 7. Data set 3 has been constructed to illustrate Figure lc.

When the extreme-value distribution (3) is fitted (see, for example,
Stephens, 1977, or 1986a, Section 4.10), the parameter estimates are
a=1.335 and b = 0.343. In Section 3, we describe the test of fit for
this di.str:lbutioﬁ. It will not be the same as that described in Stephens
(1977; 1986a, Section 4.10) because it must be made conditionally on the

occurrence of Figure lc.

[y
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2.6. Pigures 1b and 2b. Suppose A is positive, so that either Figure la

(2a) or 1b(2b) is appropriate, and suppose a plot gives Figure 1b. The
conventional estimate vwill be a = x 1y vith an infinite likelihood, but
again we propose Procedure A, adapted for unknown =, to give a less biased
estimate of a, and also, almost always, a better overall fit.

Suppose o, B, m_ are ‘estimates (ve omit the symbol) at iteratiom

r: find estimates a as follows:

1 Prel’ Tl

(a) Let a - xu) - pljnk, vhere k = 1/.1"

r+l
(b) Then solve (6) for m1 using a = @1

and m_ ...

(c) Use (11) to give prﬂ.’ using e el

Iteration of steps (a) to (c) continues until the acc\iracy required for
m is obtained. Initial estimates m, and B, may be found by setting
ap = x(l) and continuing with steps (b) and (c) above, but using only the
n-1 values *(2)' 8(3),...x(n). The £inal estimates will be the estimates

a, B and m for Figure 1b.
Example 4, Case 7 Figure 1lb is the plot for data set 2; the initial

estimates @, ﬂo

7 iterations give final estimates a = 9.313, B = 93.50, m = 0.763. Here

. m_ are then 12.0, 101.01 and & = 0.795; with Procedure A,

iteration was stopped when two successive values of m differed by less than
0.001. We shall see in Section 3 that the second set of estimates gives a
better fit to distribution (1).

2.7 Figures la and 2a: Example 5, Case 7: Finally we turn to solutions based

on Figures la and 2a. These can almost always be found very straightforwardly
by solving (9) and (10) by iteration and searching for the crossing in

Figure 2a with smaller a_. For data set 1, the maximum in Figure la, and the
crossing in Figure 2a, occur at & = 99.02, with @ = 2.38 and j = 78.23.
(The saddlepoint is at a, = 116.960, m = 1.008).

2.8 Comment. When Figure 1lb occurs, we have found, from many Monte Carlo

13




studies, that Procedure A alyays converges, and gives a better fit to (1);
then @ 1is small. For larger values of the trus m, Procedure A also
converges for soms data sets, but there is also an MLE because the plot is
like Figure la. In this case, the MIE should be taken.

1If one is seated before a graphics terminal, it is not difficult to
plot the profile likelihood and decids betwsen the various Figures: also to
plot =y and o and find the estimates. It is much more difficult to
automate the procedure for a computer. The value of A in Sectiom 2.5 will
decide vhether or not Figures lc and 2c¢ obtain: ths problem is to decide
between Figures la (or 2a) and 1b (or 2b). We suggest that e, be started so
close to x(n that m,, - By is almost 1.00 (for the examples given, this
0°10

Bay mean xu) -a, of the order of 1

mo - B also gets smaller, and either passes through zero ( so that a

). Then make a, smaller so that

saddlepoint exists and we have figures la and 2a), gr is clearly seen to

approach its limit A ywithout passing through zero (and we have Figures 1b
and 2b). 1In the former case, once the saddlepoint has been found, the steps
in decreasing a, can be made larger till the MLE is found when L is

zero for the second time.

3. GOODNESS-OF-FIT TESTS.

In this section the EDF tests are described. The mull hypothesis is

Ho:

(a) Find the estimates of unknown parameters as described above, and make the

the random sample Xys Xy,...,X, cCOmES from distribution (1).

transformation, for { - 1,2,...,n, Zu) - F(xu); a,f,m), using the estimates
vhere necessary.
(b) Calculate statistics Az, Ilz. 02 as follows:

Aa.n. (1/n)5(24-1) [Log(z ;) + Log(1 -

wz-z(z

2
(1) - (2i-1)/(2n)}" + 1/(12n).

14




v? « W - n(z - 0.5)2, vhere
- Iz ,)/n, and vhere sums are for i~ 1 to n, and log means natural

logarithms.

(Ve shall illustrate using only Az

in the Examples below).

(c) let c=1/m, or 1/mvhen m 1is estimated. Enter Table 1, using the
subtable for the appropriate case. Vhen m or m> 2, ve have 0 < ¢c < 0.5
and the subtable is entered on the line corresponding to c¢; when

m or m is less than or equal to 2, so that c = 0.5, the last line of the
subtable, labelled c = 0.5, should be entered. Ho is rejected at
significance level p if the statistic used is greater than the value given
for level p. The table has been given using c¢ rather than =& because
linear interpolation for c¢ will give good accuracy. In all the tables, the
given points are for the asymptotic distributions of the statistics: however,
they can be used with good accuracy for smaller values of n (say n 2 10);
for n < 10 a goodness-of-fit test would in any case have very little power.
Example 1 Case 1 (continued) For data set 1, with = assumed to be 2.1, (so

c=1/m=0.476), p = 70, and a = 105.31, the value of Az

is 0.307.
Reference to Table 1 for Case 1, with entry at c¢ = 0.476, shows no
significance at the 508 level, so the Weibull fit is good.

Example 2. Case 3 (continued) For data set 2, with a = 0.5, a ~ 11.69 and

B = 70.44 as in Example 2, we have Az = ,754. Since c = 1/m = 2.0, greater

than 0.5, the table for Case 3 is entered on the last line (c = 0.5); A2 is
not significant at the 208 level, so the fit is good.

Example 3. Case 7 For data set 3, the extreme-value distribution (3) must

be fitted and estimates are & = 1.335 and b = 0.343. After the Probability

Integral Transform z(i) - F(x,..), wvhere F(x) 1is given by (3), the value

of A2

(1)
is 0.561. This value should then be referred to Table 1, Case 7,

with ¢ = 0, corresponding to @ = o, The p-value is approximately 0.08.




Comment. This test should not be confused with the usual test for the
sxtrems-value distribution wit‘:h unknown paramsters, given by Stephens (1977;
1986a, Section 4.10). The test given in the previous section is made
sonditionally on the occurremce of Figure lc for the profile likelihood plot,
and Table 3 given here, with ¢ « 0, is then the relevant table. The tests
given by Stephens are those for the situation wvhers it is intended from the
start to fit an extreme-valus distribution to the data set.

Example 4 Case 7 (continued) For data set 2, assuming all three paramsters

estimated in the conventional way, giving a = 12.00, 3 = 101.01, & = 0.795,
we have A2 = 0.703. When Procedure A is used, the estimates, given in
Section 2.10, are now a = 9.313, 3 = 93.50, @ = 0.763, and the test statistic
1s 4% = 0.54, indicating a bstter fit. Since ¢ = 1/i = 1.31 is greater than
0.5, the Table for Case 7 is entered on the last line (c - 0.5). The
significance level is then 0.17.

Exsmple 53 Case 7 (continued) For data set 1, with all three parameters

estimated as in Example 3 above, namely a = 99.02, 3 = 78.23, and = = 2.38,

A2 = 0.260. Table 1 is entered at & = 1/a = 0.420. The above

test value is not significant at the 50% level, so the fit is very good.

4. ASYMPTOTIC THEORY OF EDF TESTS.

4.1 Asymptotic distributions

In this section the asymptotic theory of EDF tests is summarized. The
calculation of asymptotic distributions of EDF statistics follows a
well-known procedure (see, for example, Durbin, 1973; Stephens, 1976). It is
based on the fact that y () = V’E(Fn(t) - z), vhere F _(2) is the EDF of
the z-set, tends to a Gaussian process y(z) as n 9 o, and the statistics
are functionals of this process. The mean of y(z) is zero: we need the

covariance function p(s,t) = E{y(s) y(t)). When all parameters are known




(Case 0), this covariance is po(l.t) = min(s,t) - st. Vhen paramsters are
estimated, the covariance will depend on those which are estimated; if the
method of estimation is efficient the covariance will not depend on true
values of location or scale parameters a and f, but vill depend on the
shape parameter am. Ve {llustrate the calculation for Case 7, the most
difficult case.

Suppose the parameters are components of a vector #: 01 -a, 02 -p,
03 = m, and (Case 7) suppose all three are unknown. lst F(x;f#) now denote
the distribution F(x:;a,8.m) and let £(x;#) be the corresponding density.
Suppose a vector g(s), with components 31(:) is constructed as follows:

g (o - EZQ | 423, as)

i
vhere the right hand side is written as a function of s using the
transformation s = F(x;0). Let (g(s))’' denote the transposs of g(s).
Let D be the (symmetric) matrix with entries
§ ij
let I be the inverse of D. Then, for Case 7,

= B(-0%10gf (x;0)/20 80 )+ 4.4 = 1,2,3, vhers E denotes expectation, and

Py(8,£) = p (8,£) - (g(5))'E g(s) . (16)
From (23) above, the components of g(s) becoms, after some algebra, and

using F for F(x;@):

gl(l) - g - . Xl-3) ;") (- log(l-l))(..l)/.

g, - 35 = 252 10g1-0) » (17)

83(0) = 5 = - 1122) (105(1-9)) 1og(-1og(1-2))

Also, for Case 7, and for m > 2, D has the top right terms:

17




L
¢

L'j}ﬁr(l ‘2-') : gii}lrb ] %] T - r[z . %] . ,..[2 %]

D~ L - lu%—*—-‘-‘ (18)
. r-gq + 2!"!12

\

Vhen I 1is calculated and g(s) and I are inserted into (16) p,y(s,0)
will be independent of a and S. When m s 2, the M.L. estimate a of a
is super efficient in the sense of Darling (1955) and then the covariance will
not need the first term in g(s) and corresponding terms in D; the
asymptotics are the same as if a were known, that is, for Case 6. Thus
g(s) = (82(-). 33(:)) and D 1is as in (18) but with the top row and first

column removed.

For other cases, pk(:.t) for Case k is calculated using only those
components in 31(0) which correspond to unknown '1. with the corresponding
entries in D, before this is inverted to give the T used in (16). The

Cramér-von Mises statistic wz is based directly on the process y(sz), while

A2

A2 are given by

1s based on the process a(z) = y(z)/(£(1-2))"%; asymptotically ¥* and

2

1
Vz-Iyz(z)dz and A - 2
0

a (z)dz .

© Sy =2

The asymptotic distributions of both statistics are a sum of weighted
independent x; varisbles; the weights must be found from the eigemvalues of
an integral equation with, for W2, the £ (8,t) for case k, as kernel.
For Az ons must find the pk(s,t) of the a(z) process. Once the
weights are known, the percentage points of the distributions can be
calculated by Imhof’s method. The techniques are straightforward once the

’k("t) are known, and we omit the details: they are given in Lockhart and

18




Stephens (1989).

5.1 Asymptotic distributions and Monte Carlo studies The results of Saith

(1985) can be used to establish rigorously that W’ has the asymptotic
distributions calculated as above, for any estimator found by a method of
estimation having the properties of Theorem 3 of Saith. In an unpublished
note the present authors have demonstrated the existence of such an estimator
by establishing that it is possible to select the "correct” local maximum of
the lihlw in the event that there are several. However, we emphasize
that no Monte Carlo data set has aver been found in which two such local
maxima exist. We should also note here that, for Az. we are unable to give a
rigorous dsrivation for the asymptotic distribution; this problem arises
vhenever parameters are estimated in goodness-of-fit tests of the Anderson-
Darling type. The asymptotic distribution is, however, confirmed by extensive
Monte Carlo studies. These Mounte Carlo studies were undertaken to confirm
various features of the above estimation and testing procedures. Typically,
they involved 10000 samples of sizes n = 10, 20, 30, 40, 60, 100, and 200, and
with values of = from 0.1 to 10. The studies firstly confirmed the
conjecture, proposed by other authors also, that plots of ng and =0 will
not cross more than twice, so that a local maximum of the likelihood occurs,
if at all, only once. This is clearly important in knowing what to search for
vhen the parameters are to be sstimated. The studies also confirmed the
success of Procedure A in providing estimates to give a better fit, noted
earlier.

3.2. Frequency of Figures 1a 1b and lc. These studies also revealed how the

relative frequency of Figures la, 1b and lc will depend on n and on =. As

n grows larger, Figure lc becomes less and less likely and as = becomes




smaller, for fixed n, the relative frequency changes from Figure la towards
Figure 1b. These results are illustrated in Table 4.

The results of Smith (1983) guarantee that Figure lc arises only with
probability tending to 0 as n tends to infinity for any fixed finite value
of m in (1). If the data are sampled from the two parameter extrems value
distribution, however, (that is, (1) with = 9 @) Pigure lc may be expected to
arise about half the time. This can be explained as follows. The sampling
can be regarded as from the family (2), with ¢ = 0, and samples will give
sometimes ¢ > O (Figure la), and sometimes ¢ < 0 (Figure lc). This probles
of unobtainable estimates within the desired family also arises in testing for
the von Mises distribution on the circle with known direction of
concentration. In Lockhart and Stephens (1985) it was lugost.d that there
too an expansion of the modsl could overcome this problem. Similarly here,
testing for the Ceneralized Extreme Value distribution (2) rather than the 3
parameter Weibull distribution (1) will eliminate the awkwardness. Tests for
the enlarged model (2) will be presented in a future paper.

5.3 Convergence of distributions of EDF statistics For finite n, the Monte

Carlo studies show that the distributions of Pz, 02 and Az converge rapidly

to the asymptotic. This is similar to the behaviour of these statistics in
other test situations and tables will not be given. The asymptotic points in
Table 1 can bo used with good accuracy for n 2 10.

EDF statistics are known to provide powerful tests for many
distributions; the powers naturally depend on the alternatives considered,
and a study is being made on power properties for the various alternatives to
the Weibull usually encountered. On the whole, with the limited power
results at present available, the statistic 42 above is suggested as the

preferred statistic for overall Weibull testing.
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APPENDIX 1: DATA SETS

Set 1. Number of cycles to failure of springs (in units of 1000 cycles)

225 n 198 189 189 135 162 135 117 162

Set 2. Times to failure of airconditioning equipment for an aircraft.

7 57 48 29 502 12 70 21 29 386 59 27 133 26

Set 3. Artificial data.

326

0.273 0.468 0.504 0.535 0.617 0.804 0.932 1.034 1.289 1.293

1.296 1.376 1.399 1.407 1.422 1.497 1.521 1.542 1.685 1.737




APPENDIX 2

(a) Asymptotes for my and ™o (Section 2.5)

Suppose, as a 9 - «, the relation & = ya + bo + bl/a. wvhere 17, bo

and b, and b, are to be determined below for sach of =, and R,

1l 1
Then we have
2 3
x, |m b.]|x x x
1 1 i i i
1-—-] - -[10+b +—]-—+ + ] (Al)
-2 “"{ Ay | e e
. [7x2/2 + bx,] [1x/3 + bx2/2 + b,x,]
™y 4 0™ 1 >y (' 1*1
-8 - + i—
a
a
-yx -yx
-e j'cxp(-i’.).uy."'c 1[1-12)*-(22/2)]
3 2 2 4 22
2/2 4+ b -[1x1+box‘+b ]+1xl+box1 bovx
"Xy 7=/ 0™ 1 I 3 & i S B L
- g 1 - + + .
™ 2 2

1=
Hence setting T = )X xf e 1, where sums are for i from 1 to

n, ve get
n B
1§1(1 - 81/0)' - 1'0 + 22- + c—% where

Az - - ['71'2/2 + borll and

2 2
82 - - (11'3/3 + boT2/2 + b1T1) +7 1'4/8 + bo1T3/2 + bo 1'2/2 .

»-1 A, 2
Also 02 = E(1- 1/") - 1'0 + == + 33/0 , where
Ay = - [¥T,/2 + (by-1)T;] and

By = - (1 T,/3+(by-1) Tp/2 + BiT)) + 17T, /8 + (by-1)yTy/2 + (Ba-2b+1)T,/2 .
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Ve nov use the above results in equation (10). This may be written
2lza -zt -aza -zt

Carrying three terms in each expression, we have
b - B b B
[1°+bo- 1+;l][1+5+1i][1'0+?+—§] - [n+bo+ai][1'o+:—3-+-%]

a a a
vhere x = Zx,/n and s - zxi/n. The coefficients of the constant term give
VAT, + (by-1)T, + 7A, = 7A; + byT,; then V(XTy + Ay - Ay) = T,. But
Az "3"1'1' so we have for v,

1 -
3" (x - T]_/To) . (A2)
Next, equating coefficients of 1/a, we have

vs To +vx .42 + 132 + (bo-l)ﬂ'o + (lro-l)A2 + "170 - 83 + b°A3 + blro;

then 1(81‘0+xA2+32-33)+b0(ﬂ'o+A2-A3)~ﬂ'o-A2-0. (A3)
Here
T3  beT, "2"4 by1T5 "g"z
By=- |7ty + g+t +t—73 =
T, (b.-1)T T,  (by-1)1T, (b2 - 2b+1)T
Boa. B3, 20772 o, 8, D0 3,5 ot )ia
3 3 T 7 1°1 -8 ~2 '
" thus
11'3
32-83-T+b°1'2-1'2. Recall also that Az-As--Tl. then,

substitution in (A3) gives

2
bo(XTy + 7 T, - 7XT;) + g— (Ty- XT,) + 4(sT - T,/2)

- xT

0o~ 0 (A4)




Solution of (A2) for <+, and (A4) for b,, now called 810, gives the

cosfficients in the asymptote T i + 610. given in Section 2.5.

Ve now consider equation (9), which may be written

1

Q1 - xi/.)' - -{z log(1-x,/a)(1 - xI/c)- - [; T log(l- 1/c.)]::u- 1/.;.)"} .

Expanding, wve have

2 2
x x -yx (vyx,/2 + b,x_.) B
[’l‘o+.2-(1a+bo)-2£-+-2-:—2]0 1[1- S °x‘]+;§

100 R

T, T,/2 +v7T,/2+b,T, =xT 8 To/2 + AX
[To*‘:‘z‘]""‘”"o’{ 1_ T2 ¥2 0T, o T/ ‘2}

'_"_T* 2 *a

a a
- -y(iro- D+ {bo(ao- P * 1lsTy/2 + Azi + (1T5-T,)/2 + borzl}/c .

Equating the constant terms gives T, = 1('ﬂ'o- L)+ the same as for equation
10. Thus the asymptotes for my and m, will be parallel. Further, the

coefficient of 1l/a gives
. -nTo . 12‘2 122'
Ay =bg(o - T)) +7 =+ yE - 2+ 2+ AT,

more algebra gives

by (X1, +11'2-11'x)+1[T--2—x]+—i-——0 (AS)

Solution of (AS) for bo gives the congtant 89 in the asymptote
By = yo + 89 quoted in Section 2.5.

Difference A Finally, we have A = 810 - 89 given by

(‘10“9)(-”'0 + "Tz' 1”1) - iTo - 7(3 2)/2 ’

as in equation (14) of Section 2.5.
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APPENDIX 3

In Section 3.1 it was pointed out that the means of the asymptotic
distributions of 92 and 02 can be found analytically. For completeness,

we list below six integrals which arise in these calculations.
1

11 - I (1-.)2 (-103(1-.))2(.-1)/. ds = r(3_2/‘)/3(3°2/l) .
2 2
(1-8)“(log(l-8)) ds = 2/27

(1-8)2(10g(1-8)12[10g(-10g(1-8)1]? ds

O ey b © ey = O

- 2(x2/6 + 7%= 3y + 2 + (27-3)1og 3 + log23)/27

- 0.105618
1, - : (1-8)2(-10g(1-8))2"1/® 45 = r(v)/P
0
1
I, - ; (1-8)2(-10g(1-8)12"1/® 10g(-log(1-8))ds
0
- (' (b) - log3 I'(b)1/3° .
wvhere, in Ia and 15, b= 3.-1/m;
1
16 - I (1-8)2(105(1-3))2 log{-log(l-s)})ds
0

= (F'(3) - 2 log3})/27
- (3 - 29 - 2 log3)/27 = - 0.01302




TABLE |

* CRITICAL POINTS FOR WEIBULL CASE 1 FOR A**2

C 0.500 0.750 0.850 0.%00 0.950 0.975 0.990 0.995

0.496 0.735 0.915 1,06t 1.327 1.590 1.958 2.243
0.484 0.713 0.882 1.019 1.260 1.510 1,851 2.115
0.474 0.693 0.853 0.982 1.208 1.440 1.756 2.001
0.467 0.677 0.830 0.953 1.166 1.365 1.680 1.909
0.464 0.670 0.818 0.936 1.141 1.350 1.6317 1.847
0.674 0.821 0.938 1.139 1,343 1.615 1.825
0.485 0.696 0.847 0.966 1.171 1.377 1.651 1.860
0.517 0.747 0.910 1.039 1.259 1.480 1.774 1.997
0.572 0.840 1.032 1,185 1.448 1.713 2.068 2.340
0.65¢ 0.995 1.249 1.455 1.816 2.189 2.694 3.086
0.774 1.248 1,621 1.933 2.492 3.077 3.878 4.383

ouououvuowvwowum
o
L]
[
N
o

CRITICAL POINTS FOR WEIBULL CASE 3 FOR A**2

c 0,500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

0.342 0.472 0.563 0.635 0.757 0.879 1.043 1.167
S 0.345 0.476 0.568 0.640 0.763 0.886 1.051 1.176
0 0.349 0.482 0.575 0.648 0.773 0.898 1.065 1.193
S 0.354 0.491 0.586 0.661 0.789 0.917 1.088 1.219
0 0.368 0.503 0.602 0.679 0.812 0.945 1.122 1.258
s 0.374 0.520 0.624 0.705 0.844 0.984 1.1717 1,314
0.30 0.388. 0.544 0.654 0.740 0.889 1.039 1.240 1.394
0.35 0.407 0.574 0.694 0.788 0.951 1.116 1.338 1.509
0.40 0.430 0.614 0.747 0.853 1.037 1.224 1.478 1.673
0.45 0.459 0.667 0.819 0.941 1.156 1.376 1.675 1.909
0.50 0.496 0.735 0.915 1.061 1.321 1.590 1.958 2.243
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D et e T W

CRITICAL POINTS FOR WEIBULL CASE 5

FOR A**2

c |0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995
0.0 .0.342 0.472 0.563 0.635 0.757 0.879 1.043 1.167
0.05 } 0.343 0.473 0.564 0.636 0.758 0.88%1 1.045 1.170
0.10 : 0.344 0.476 0.567 0.640 0.763 0.887 1.052 1.178
0.20 : 0.353 0.489 0.585 0.660 0.78%9 0.919 1,092 1.225
0.25 : 0.363 0.505 0.604 0.688 0.818 0.955 1,138 1.278
0.30 0.381 0.532 0.640 0.725 0.872 1.021 1.222 1.377
0.35 i 0,411 0.583 0.706 0.805 0.977 1.154 1.394 1.580
0.40 0.460 0.673 0.832 0.962 1.192 1.432 1.762 2.017
0.45 0.535 0.828 1.061 1.257 1.611 1.982 2,490 2.883
0.50 0.634 1.059 1.418 1.724¢ 2.276 2.853 3.639 4.247

CRITICAL POINTS FOR WEIBULL CASE 7 FOR A**2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995
0.0 . 0.292 0.395 0.467 0.522. 0.617 0.711 0.836 0.931
6.05 0.295 0.399 0.471 0.527 0.623 0.719 0.845 0.94)
0.10 0.298 0.403 0.476 0.534 0.631 0.728 0.856 0.954
0.15- 0.301 0.408 0.483 0.541 0.640 0.738 0.869 0.969
0.20 0.305 0.414 0.490  0.549 0.650 0.751 0.885 0.986
0.25 0.309 0.421 0.498 '0.559 0.662 0.765 0.902 1.007
0.30 0.314 0,429 0.508 0.570 0.676 0.782 0.923 1.030
0.35° 0.320 0.438 0.519 0.583 0.692 0.802 0.947 1.057
0.40 0.327 0.448 0.532 0.598 0.711 0.824 0.974 1.089
0.45 0.334 0.469 0.547 0.615 0.732 0.850 1.006 1.125
0.50 0.342 0.472 0.563 0.636 0.757 0.879 1.043 1.167

- - o— — e
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TABLE 2

CRITICAL POINTS FOR WEIBULL CASE 1

FOR W**2

C 0.500 0.750 0.850 0.9500 0.950 0.975 0.990 0.995

0.0 0.074¢ 0.116 0.148 0.174 0.222 0.271 0.338 0.390
0.05 0.021 0.111 0,140 0.164 0.207 0.251 0,312 0.358
0.10 0.069 0.106 O0.134 0.156 0.195 0.235 0.289 0.332
0.15 0.068 0.103 0.129 0.149 0.186 0.222 0.272 0.310
0.20 0.067 0.101 0,126 0.146 0.180 0.215 0.26! 0.296
0.25 0.068 0.102 0.127 0.147 0.180 0.214 0.259 0.293
0.30 0.071 0.107 0.133 0.154 0.189 0.224 0.271 0.306
0.35 0.077 0.117 0.147 0.171 0.211 0.252 0.306 0.347
0.40 0.086 0.136 0.172 0.202 0.254 0.308 0.381 0.436
0.45 0.100 0.164 0.215 0.257 0.332 0.4:0 0.518 0.601
0.50 0.119 0.209 0.284 0.347 0.461 0.581 0.744 0.869

CRITICAL POINTS FOR WEIBULL CASE 3 POR W2

C 0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

0.0 0.050 0.073 0.089 0.102 0.124 0.146 0.175 0,197
0.05 0.051 0.074 0.091 0.104 0.126 0.149 0.179 0.202
0.10 0.052 0.076 0.093 0.107 0.130 0.153 0.184 0.208
0.15 0.054 0.078 0.096 0.110 0.13¢ 0.159 0.191 0.216
0.20 0.055 0.081 0.100 0.115 0.140 0.166 0.201 0.227
0.25 0.057 0.085 0.105 O0.12t 0.148 0.176 0.213 0.241
0.35 2.063 0.094 0.117 0.136 0.169 0.202 0.248 0.283.
0.40 ©.9566 0.100 0.126 0.147 0.183 0.221 0.272 0.311
0.45 .070 0.107 0.136 0.159 0.200 0.243 0.30! 0.346
0.50 0.074 0.116 0.148 0.174 0.222 0.27%t 0.338 0,390
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CRITICAL POINTS FOR WEIBULL CASE 5

0.500

0.750

0.850

0.900 0.950

FOR W**2

0.995

NhbWWNNOHEFOO
ouocuvwouvwouwnmwowm

CO0O0O0OO0O0OOOO0O0

0

0.050
0.050
0.051
0.052
0.053
0.055
0.059
0.065
0.073
0.086
0.102

CRITICAL POINTS FOR WEIBULL CASE 7

0.073
0.073
0.074
0.075
0.078
0.081
0.088
0.098
0.116
0.145
0.186

0.0895
0.089
0.090
0.092
0.095
0.100
0.109
0.124
0.150
0.194
0.258

0.102 0.124
0.102 0.124
0.103 0.126
0.105 0.128
0.109 0.133
0.118 0.141
0.126 0.155
0.144 0.180
0.178 0.228
0.236 0.311
0.320 0.431

FOR W*#®2

0.500

0.750

0.900 0.950

0.975

0.990.

0.197
0.198.
0.200
0.206
0.214
0.229
0.257
0.310
0.409
0.581
0.827

0.995

oA~ X-X-X-YiN-RENE )
EEEEEEEREEE
N atWwWwWNNHMFOO
couvounouvouow

0.044
0.044
0.044
0.045
0.045
0.046
0.047
0.047
0.048
0.049
0.050

0.062
0.063
0.063
0.064
0.065
0.066
0.067
0.068
0.069
0.071
0.073

0.075
0.076
0.077
0.077
0.079
0.080
0.081
0.083
0.085
0.087
00089

0.085 0.103
0.086 0.104
0.087 0.105
0.088 0.106
0.089 0.108
0.091 0.110
0.093 0.112
0.094 0.114
0.097 0.117
0.099 0.120
0.102 0.124

31

0.120
0.122
0.123
0.125
0.127
0.129
0.132
0.134
0.138
0.141
0.146

0.144
0.145
o.“?
0.149
0.152
0.154
0.157
0.161
0.165
0.170
0.175

0.162
0.163
0.165
0.168
0.170
0.174
0.177
0.181
0.186
0.191
0.197
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TABLE 3

CRITICAL POINTS FOR WEIBULL

CASE 1

0.500

0.850

0.900

0.950

POR U**2

0.995

nmnounmowowun

00000000
M)
WWNN~EHFOO

o0Co

)
(T XX
owno

-

0.060
0.060
0.060
0.060
0.061
0.062
0.063
0.064
0.066
0.069

0.069

CRITICAL POINTS FOR

0.129
0.129
0.129
0.130
0.131
0.132
0.134
0.138
0.143
0.152
0.152

WEIBULL

0.159
0.159
0.159
0.160
0.1861
0.163
0.165
0.169
0.176
0.187
0.187

.rén pre2

0.500 0.750 0.850

0.800

0.975

0.990

0.261

0.261

0.262
0.262
0.264
0.266
0.270
0.276
0.286
0.304

0.304

0.048
0.049
0.049
0.050
0.051
0.052
0.054
0.085
0.058
0.060

0.060

0.070
0.071
0.0M
0.073
0.074
0.076
0.079
0.082
0.085
0.090

0.090

0.085
0.086
0.087
0.089
0.091
0.093
0.096
0.100
0.105
0. 11

0.111

- 0.097
0.098
0.100
0.101
0.104
0.107
0.111
0.115
0.121
00129

0.129

2

0.139
0.140
0.142
0.145
0.148
0.153
0.159
0.167
0.176
0.189
0.189

0.167
0.168
0.170
0.174
0.178
0.184
0.19
0.201
0.214
0.230

0.230 0.261




0

CRITICAL POINTS FOR WEIBULL CASE 5 FOR U**2

0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.985

- A-X-X-¥-Y-N-N-N-N-]
® 5 0 6 0 0 ¢ 0 0 0 @
NhbWNEHFOO
cSCuLounouvwounmowm

0

0.138 0.166 0.187

0.048 0.070 0.085 0.097 18
lg 0.139 0.167 0.188
1

o.
0.048 0.070 0.085 0.097 0.
0.049 0.070 0.086 0.098 O 0.140 0.168 0.189
0.049 0.07v 0.087 0.099 0.121 0.142 0.170 0.192
0.050 0.072 0.088 O0.101 0.123 0.145 0.174 0.196
0.051 0.074 0.090 0.103 0.126 0.148 0.178 0.201
0.052 0.076 0.093 0.106 0.130 0.153 0.185 0.209
0.053 0.078 0.096 0.110 0.135 0.160 0.194 0.220
0.055 0.082 0.101 0.116 0.143 0.170 0.207 0.235
0.057 0.085 0.106 0.123 0.152 0.18t 0.222 0.253
0.057 0.085 0.106 0.123 0.152 0.181 0.222.0.253

CRITICAL POINTS FPOR WEIBULL CASE 7 FOR U**2

0.500 0.750 0.850 0.9500 0.950 0.975 0.990 0.995

00000000000

VbW -
oo

ounmouwounouwown

0.043 0.061 0.074 0.084 0.102 0.119 "0.143 0.160
0.043 0.062 0.075 0.085 0.103 0.121 0.144 0.162
0.044 0.062 0.076 0.086 0.104 0.122 0.146 0.164
0.044 0.063 0.077 0.087 0.105 0.123 0.148 0.166
0.045 0.064 0.077 0.088 0.107 0.125 0.150 0.168
0.045 0.065 0.078 0.089 0.108 0.127 0.152 0.17%
0.046 0.065 0.080 0.091 0.110 0.129 0.154 0.173
0.046 0.066 0.081 0.092 0.111 O0.131 0.157 0.176
0.047? 0.067 0.082 0.094 0.113 0.133 0.159 0.180
0.048 0.068 0.083 0.095 0.115 0.136 0.162 0.183
0.048 0.070 0.085 0.097 0.118 0.138 0.166 0.187

33




Figure lc

Figure 1b

TABLE 4

RELATIVE FREQUEMNCY OF FIGURES la, 1b and lec.
Figure la
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The table gives the percentage of 10000 Monte Carlo samples giving the
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Rgure 1a
Piot of jog profiile ikelihood for data set 1 (Cox arxt Oakes)
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Figure 1b
Plot of log profiie likelihood for data set 2 (Proschan)
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Figure 1c
Piot of log profile likalihood for generated data set3 ( =20)
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Figure 2a
me and mq for data zet 1 (Cox and Oakes)
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Figure 2b
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™My and myo for generated data set 3 ( n = 20)
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Susmery

Estimation techniques are given for the three-parameter Weibull
distribution, with the location (or origin) parameter unknown, and possibly
also the shape and/or scale parameters unknown. 7Tests of fit are described,
and tables are given for the EDF statistics Az. Uz and Uz, to make the tests.

s.inral examples are discussed.




